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Abstract

Ocean straits are regions of enhanced dynamic activity characterised by large mixing of water masses.

Therefore, they stand as challenging places to make model prediction.

We investigate the tidal response of coastal waters in Cook Strait, separating the North Island from the South

Island in New Zealand. The simulations are run using the Gerris Flow Solver. The model implemented is based

on the linearized �-dimensional shallow water equations. The open boundaries are forced with the M2 tidal

constituent, extracted from a high resolution larger-scale encompassing model.

In this report, the distributions of amplitude and current are described in details. Validation of the numerical

model is achieved by comparing with the global scale model data and with sea level and current measurements.

The sea level amplitude and phase turned out to be in very good agreement with those obtained from the driving

model and observations. The results obtained for the distribution of current were also satisfactory despite the

lack of observed data in the geographical area of interest.
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1 Introduction

New Zealand is in the Southern Hemisphere, lying on the South-West of the Pacific Ocean, and is comprised of
two major islands.
Accurate knowledge of ocean dynamics and particularly tides propagation is critical for predicting shoreline
change and pollutant transport on coastal regions, with applications in oil spill and dredging operations man-
agement.
Significant progress has been made in the development of numerical models for ocean circulation in this re-
gion. Actually, Bye & Heath [2], Heath [8], and LeProvost et al. [3] exhibited the complete rotation of the
semi-diurnal tides around New Zealand. It means that at any given time we can observe both high and low tide
somewhere along the New Zealand Coast. Recently, Walters et al. [14] developed a barotropic model in the
area within New Zealand’s Exclusive Economic Zone, driven by TOPEX/Poseidon altimeter data on the outer
ocean boundaries. Their results were compared with those from field observations and good agreements were
obtained.
In the work presented here we will focus on the area around Cook Strait illustrated in Fig 1. A strait is a narrow
channel that separates two larger bodies of water, and thus lies between two land masses. Cook Strait connects
Northern and Southern Islands in New Zealand and it is �� kilometres wide at its narrowest point. This area is
of special scientific interest mainly because its topography gives rise to worthwhile dynamics.
The Gerris Flow Solver is run to simulate oceanic circulation in Cook Strait. The model implemented in Gerris is
based on the linearized �-dimensional shallow water equations. The tide is introduced along the open boundary
using the larger-scale encompassing model data.
The goal of this project is to obtain accurate amplitudes and phases for sea-level and to examine the distribution
of current in order to provide a validation of the oceanic numerical model. To accomplish this, we will compare
the predicted tidal results with observations and with the global ocean model developed by Walters et. al [14],
which has been validated.
After explanations about the theory of tides, we will first give a description of the model underlining the impor-
tance of boundary conditions. Then we will present the results and discuss their accuracy.

Figure 1: Bathymetry around Cook Strait.
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2 Origin of tides

2.1 A simple model: the equilibrium theory

Tides are the result of gravitational attraction between stellar bodies, mainly the Moon and Sun. The simplest
concept of tides, called the equilibrium theory was first proposed by Newton in ����. In this model, we assume
that the Earth is not rotating and that it is fully covered by water. Then the tide-raising forces at the Earth’s
surface result from a combination of two basic forces: the force of gravitation exerted by the Moon (and Sun)
upon the Earth, and the centrifugal force produced by the revolutions of the Earth and Moon (and Earth and
Sun) around their common centre-of-gravity. Then if one considers the Moon-Earth system, there is a balance
between the gravitational attraction and the centrifugal acceleration of both with respect to a common axis
of rotation. However, although the centrifugal force is the same for all points on the Earth, there are slight
differences in the gravitational attraction. In fact, the force of gravity is proportional to the product of the
masses of the two objects and inversely proportional to the square of the distance between them. Therefore
the gravitational force is larger at points on the Earth’s surface closer to the Moon and smaller at points on
the opposite side. The residual force acting towards or away from the Moon is called the lunar tide-generating
force. Since the Earth is assumed to be completely covered by oceans and because water particles are free to
move, the tidal deformation produces two tidal bulges.
The situation is illustrated schematically in Fig.2. Here we have displayed the combination of forces of lunar
origin producing the tides. �� refers to the centrifugal force due to the Earth’s revolution around the barycenter,
�� represents the gravitational attraction of the Moon, and the resultant tide-generating force is called �� .

Fg

Ft

FcFg

Ft = 0

FcFg

Ft

Fc

EARTH

MOON

Figure 2: Tidal bulges.

The same applies for the Sun-Earth system, but the solar tide-generating force is only about three-sevenths
of the lunar on account of the greater distance of the Sun from the Earth.
Although the tide-generating force is very weak compared to the Earth’s gravitational force, it is a body force,
which means that it acts on all the mass of the fluid and besides it acts horizontally, hence the resulting signifi-
cant effects.

2.2 The dynamic theory of tides

However, even if the equilibrium theory easily describes the well-known tidal phenomena, it appears to be
inexact. Actually, the predicted rises are too small compared to the observed tides, thus this theory does not
give a good description of ocean motions mainly because it does not take into account the existence of continents
and the fact that ocean basins have irregular shapes. Then in contrast to the static theory, the dynamic theory
of tides recognises that the Earth is rotating and that only three-quarters of our planet are covered by water. In
this theory proposed by Laplace in ����, tides are viewed as forced waves driven by the periodic fluctuation of
the tidal forces. They act as shallow water waves, i.e, they continually interact with the bottom.

2.3 Harmonic motion and tidal constituents

As we described them above, tides are considered as waves driven by the periodic oscillations of the tidal forces.
Every finite volume of fluid has its own preferred wave frequencies, then if there is a periodic motion, the
reaction of the fluid will be much stronger if the forcing occurs at one of these resonance frequencies than if
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it occurs at other frequencies. Taking into account the size of a water body, we can calculate the resonance
frequencies of specific basins, and then determine the amplitude and phase of the tidal wave generated. Only
the largest water bodies such as the major oceans can experience tidal forcing because marginal seas cannot
produce a response to astronomical tide forcing. Then the tide-producing force generates forced waves in the
ocean and the rise and fall called tide is simply a result of the flow convergence or divergence there. As the
position and movement of the Sun and Moon are known in great detail, the tidal forces can be determined
precisely. The tide-generating force of either body is greater the nearer the body is to the Earth.
Moreover, a tide is the resultant of a number of constituents, each of which is a simple harmonic motion.
According to the period of these constituents, a tide can be diurnal (one cycle a day), semi-diurnal (two cycles
a day), or long period. Each constituent is defined by its speed, the increment in phase in degrees per hour,
and its amplitude. Almost all the constituents have been named. They are divided into semi-diurnal tides with
a period of about half a day (�� � �� � � � � � � �), and diurnal tides with a period of about a day (�� �� � � � �, ��).
They are referenced in Table 5, Appendix A.
The Earth is in direct line with the Moon once every lunar day, which is on average about �� hours �� minutes.
Then the interval between successive high waters caused by the lunar-tide generating force is on average ��
hours �� minutes.

The tides around New Zealand are predominantly semi-diurnal and the dominant component is the �� tidal
constituent. Thus there are usually two high tides and two low tides which come about 50 minutes later each
day.
Tidal streams are a direct effect of tides, but whereas the tides are periodic vertical movements of the water,
tidal streams are periodic horizontal movements. Tidal currents play a significant role in the ocean circulation.
They are predominantly parallel to the shore and tend to be more important as the water depth decreases.

3 Tidal model

3.1 The Gerris Flow Solver

The Gerris Flow Solver is an open source code developed since ��� � by Dr. Stéphane Popinet. The source code
is freely available at http://gfs.sourceforge.net.

Gerris solves the incompressible Navier-Stokes equations, or the �-dimensional shallow water and �-dimensional
hydrostatic oceanic equations. The pressure is calculated using a Multigrid Poisson Solver for Navier-Stokes
equations, and the oceanic equations are solved using a semi-implicit multigrid barotropic solver. The speci-
ficity of Gerris is its adaptative mesh refinement: the resolution is adapted spatially and dynamically. Then it
can take into account the complexity of topography, and depending on the features of the flow it will also focus
mainly on the regions where refinement is useful. This allows to save computing time. Significant improvement
has been made in the code since its creation and it is still being actively worked on.
Gerris is a console-based program. It takes a parameter or simulation file as input and produces various types
of files as output. Everything needed to run the simulation is specified in the parameter file, including:

� layout of the simulation domain,

� initial conditions,

� boundary conditions,

� solid boundaries,

� what to output (and when),

� control parameters for the numerical schemes.

The output solution is viewed using GfsView, a stand-alone application for visualising Gerris simulation files,
developed by S. Popinet. In contrast to former options (Geomview, OpenDX, Mayavi), it makes full use of the
octree representation to efficiently process and display simulation files. In this project we attempt to improve
the tidal model by finding the appropriate boundary conditions.

The region of interest shown on Fig. 1, is ��� kilometres wide. The domain is spatially discretized using
square finite volumes. At the beginning of the simulation the domain is a square. We can divide this initial
square into � others, and we keep splitting each square until the required refinement is reached. Then this
discretization can be represented as a quadtree. Fig. 3 shows the quadtree-based grid of the domain, and Fig.4
gives the corresponding tree representation.
The mesh is spatially refined near coastal boundaries to take into account the complexity of topography. Thus
the minimum cell size is � 	�� km near land, and the maximum cell size is � 	� km within the rest of the domain.
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Figure 3: Quadtree-based grid of Cook Strait.
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Figure 4: Example of quadtree discretization and corresponding tree representation.
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3.2 Shallow water theory

The numerical model implemented in Gerris is based on the linearized �-dimensional shallow water equations,
where the hydrostatic approximation is used as detailed in [12].
We consider a sheet of fluid with a constant and uniform density. The height of the surface of the fluid above
the reference level � � � is

� �� � � � ��. The rigid bottom is defined by the surface � � �� �� � � � so that the total
depth is defined by � � � � ��

. The velocity has components � � 
 parallel to the �-, � - axes respectively. The
equations of mass conservation and horizontal momentum are	

�	 � 
 �
	
�	 � 
 


	
�	 � � � 
 
 � �� � � 	 �	� � (1)	


	 � 
 �
	

	� 
 


	

	 � 
 � � 
 � 
� � � 	 �	 � � (2)	�	 � 
 		� �
�� �
 		� �
� �� � � (3)

where  is the acceleration of the Earth’s gravity,
�

is the coefficient of bottom friction, � � �� ��� �, with � the
angular velocity of the earth, and � the geographic latitude. Consequently, the terms � 
 and � � in eq. (1) and
(2) refer to the horizontal component of the Coriolis force.

We define �� , the depth in absence of motion. Then� �� � � � � �� �� �� � � � 
 � �� � � � � � � (4)

where
�

represents the elevation of the sea surface. We assume the amplitude of motion to be small which
implies � � �� 	 (5)

Moreover � and 
 are supposed to be small enough that the advective terms can be ignored as follows	��	 � � ��
	��� � (6)

where
��

is the horizontal velocity defined by �� � �� 
 � 
 	 (7)

Then the linearized shallow water equations are	
�	 � � � 
 
 � ��� � � 	 �	� � (8)	

	 � 
 � � 
 � 
�� � � 	 �	 � � (9)	 �	 � 
 		� �
��� �
 		� �
�� �� � 	 (10)

We define the mass flux vector components by �
� ��� � (11)� � 
�� 	 (12)

Then (8), (9) and (10) become 	 �	 � � � � 
 � �
�� � ��� 	 �	� � (13)	 �	 � 
 � � 
 � ��� � ��� 	 �	 � � (14)	 �	 � 
 	 �	� 
 	 �	� � � 	 (15)
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3.3 Spectral analysis

We can express the dependent variables

�
,
�

and
�

as an harmonic expansion of the main tidal constituents
represented by cosine functions. The purpose of tide analysis is to determine the amplitude and phase of the
cosine waves. Our analysis will only include the principal lunar semi-diurnal constituent �� . Then the tide is
represented by the following equation � ��� � � � ��� �� � � � �� � (16)

where
� ��� is the height of the tide at time �, � � is the amplitude (equal to one-half the tidal range), � is the

phase in degrees, and � � � �� 	��� degrees per mean solar hour, is the speed. We are interested in finding
the best approximation � to a function consisting of one particular frequency �� � � � ��� known, and we are
seeking the correspondent amplitude. This will be solved using the method of least squares. We wish to find
the best fit curve using the function � �� �� � 
 � � �� � �� � �� 
 	 � ��� �� � �� � (17)

where � ,
� � and

	 � are the unknown parameters. Then we deduce the amplitude and phase by writing� � � 
� �� 
 	 �� � (18)

� � ����� �� ��� � 	 (19)

3.4 Initial conditions

Because of the frictional dissipation, the influence of initial conditions becomes insignificant after some time.
Therefore co-oscillating tides may be generated from any specified initial state given by� � � � 
 �� � � � �� at � � � 	 (20)

In this model the initial state is generated using a GTS triangulated surface. GTS is an open source free
software also developed by Dr. Stéphane Popinet and available at http://gts.sourceforge.net/. Among its main
features, it allows to deal with constrained Delaunay triangulations.

3.5 Boundary conditions

3.5.1 Coastal boundary condition

The land boundary is rigid and impermeable to fluid motion which is expressed in the numerical model by a
zero normal flow given by ��

	� � � � (21)

where
��

is the horizontal velocity defined in (7), and � is the outward unit normal vector.

3.5.2 Open boundary conditions

According to Roed and Cooper [13]

“an open boundary is a computational boundary at which disturbances originating at the interior
of the computational domain are allowed to leave it without disturbing or deteriorating the interior
solution.”

The construction of open boundary conditions has been a subject of conjecture over the last �� years and a
large number of open boundary conditions have been proposed in the literature ( see [11] and [4] for a recent
review). Nycander and Döös [9] and P. Marchesiello et al. [10] have tested several open boundary conditions
for barotropic waves on the one hand, and for oceanic models on the other hand. Results from these studies
indicate that the Flather condition [5] seems particularly suited to the treatment of tidal waves. Moreover Blayo
and Debreu [4] emphasized the well-posedness of the model equations using these open boundary conditions.
First, the tide is introduced along the open sea boundary by specifying elevation as a function of position and
time � � �� �� � � � �� � � ��� �� � � � � 	 (22)

where � is the amplitude of sea level and � is the phase. The input data �� can be extracted from observations
(in-situ measurements), or published cotidal charts or eventually from larger encompassing models. Flather and
Heaps [6] showed that a global scale model offers the best input data.
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The model presented here is forced at the boundaries with Walters et al. data [14] resulting from a high-
resolution model encompassing New Zealand’s Exclusive Economic Zone and driven at the open ocean bound-
aries by TOPEX/Poseidon (T/P) altimeter data.
Here, tidal forcing is introduced into the model by extracting the semi-diurnal constituent �� from the encom-
passing model. We investigate the best boundary condition so that the solution within the domain will be as
close as possible to the feature of the larger scale model.
Actually the condition specified in (22) is found in some cases to not adequately model physical behaviour as
it will be detailed in section 3.6. Therefore we investigate a condition which uses both sea level forcing and
barotropic transport to reproduce realistically the tidal wave. A radiation condition applied to the velocity at
the boundary was described by Flather [5]. It requires a specification of both elevation ( ��) and normal velocity
( ���) at the boundary, related by

�� � ��� �� � � � �� 
 ��� �� � �� �� � � � ��� � (23)

where � � ��� 	
Practically, this condition is computed using an iterative scheme. First we take ��� � � and the prescribed ��
using (23). The first computation yields �� � � ���� and

� � � ��� on the open boundary. Then we run another

simulation and we substitute �� � � ���� in (23) and we reiterate the calculation to obtain �� � � ���� and
� � � ���.

We keep repeating this procedure until we notice there is no significant change in either �� or
�

on the open
boundary from one tidal solution to the next. The final solution then obtained is the correct one since in it

� � ��
on the open boundary as required. The rapidity of convergence depends on the location of the boundary point.

Solution �� �	 �
 � 	 
��  ��  ��  ��  ��  �� 
(cm/s) (deg) (cm/s) (deg) (cm) (deg) (cm/s) (deg) (cm/s) (deg) (cm) (deg)� � �� � � �� � ��� �� ��� �� � �� ��� �� � �� ��� �� ��� �� ��� ��

� � �� ��� �� � �� ��� �� �� �� � �� ��� �� � �� ��� �� ��� �� ��� ��� � �� ��� �� � �� ��� �� �� �� � �� ��� �� � �� ��� �� ��� �� ��� ���
� �� ��� �� � �� ��� �� �� �� � �� ��� �� � �� ��� �� ��� �� ��� ��

� � �� ��� �� � �� ��� �� �� �� � �� ��� �� � �� ��� �� ��� �� ��� ��
� � �� ��� �� � �� ��� �� �� �� � �� ����� � �� ����� ��� �� ��� ��
� � �� ����� � �� ����� �� �� � �� ��� �� � �� ��� �� ��� �� ��� ��� � �� ��� �� � �� ��� �� �� �� � �� ��� �� � �� ��� �� ��� �� ��� ��
� � �� ��� �� � �� ��� �� �� �� � �� ����� � �� ��� �� ��� �� ��� ���� � �� ����� � �� ��� �� ��� �� ��� �� � �� ��� �� � �� ��� �� ��� �� ��� ��

Table 1: Iterative procedure on a boundary point near New Plymouth.

Solution �� �	 �
 � 	 
��  ��  ��  ��  ��  �� 
(cm/s) (deg) (cm/s) (deg) (cm) (deg) (cm/s) (deg) (cm/s) (deg) (cm) (deg)� � �� � � �� � ��� �� ��� �� � �� ���� �� � �� ��� �� ��� �� ��� ��

� � �� ���� �� � �� ��� �� �� �� � �� ���� �� � �� ��� �� ��� �� ������ � �� ���� �� � �� ��� �� �� �� � �� ���� �� � �� ��� �� ��� �� ��� ��� � �� ���� �� � �� ��� �� �� �� � �� ���� �� � �� ��� �� ��� �� ��� ��� � �� ���� �� � �� ��� �� �� �� � �� ���� �� � �� ��� �� ��� �� ��� ��
� � �� ���� �� � �� ��� �� �� �� � �� ���� �� �� �� ��� �� ��� �� ��� ��
� � �� ���� �� �� �� ��� �� �� �� � �� ���� �� �� �� ��� �� ��� �� ��� ��
� � �� ���� �� �� �� ��� �� �� �� � �� ���� �� �� �� ��� �� ��� �� ��� ��
� � �� ���� �� �� �� ��� �� �� �� � �� ���� �� �� �� ��� �� ��� �� ��� ���� � �� ���� �� �� �� ��� �� ��� �� ��� �� � �� ���� �� �� �� ��� �� ��� �� ��� ��

Table 2: Iterative procedure on a boundary point north Charleston.

In Tables 1 and 2 we show two numerical examples that illustrate the procedure. We notice that the conver-
gence is less rapid for the point north Charleston (Table 2) than near New Plymouth (Table 1). We approximately
need �� iterations to reach the final solution.
The horizontal velocity is split into � and 
 components whose amplitudes are � � and � � respectively, corre-
sponding to the projection of the velocity vector on the local frame. In fact, New Zealand is located at ��o S, but
the simulations ran on Gerris do not take into consideration this latitude. Therefore, to obtain the east-going
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and north-going components of velocity we will have to convert the � and 
 components by taking into consid-
eration the rotation of ���o.
The solution then obtained after these �� iterations is the final solution we will use to analyse the results. The
model predictions will be compared both with data resulting from the larger-scale model and with measure-
ments. The observation data were courtesy of Walters et al.[14] and other NIWA staff members ( M. Wild from
NIWA Christchurch and M. Greig from NIWA Wellington).

3.6 Comparison between different open boundary conditions

In this section, results for the semi-diurnal tidal constituent �� are presented and compared with the driving
model solution. We analyse the results for both open boundary conditions within the simulation domain. The
inputs of each model are summarised on table 3.

Model A: non-iterative Model B: iterative

input
� � �� �� � � � �� �� � ��� �� � � � �� 
 �� � �� � �� �� � � � ���
� � ��� �� � � � �

Table 3: Classification of the open boundary conditions.

First the tide is introduced along the open sea boundary by specifying elevation (Model A). The amplitude
and phase obtained for sea level and current are then compared with those corresponding to the global scale
model. In that purpose, we examine the statistical differences between the encompassing model and the pre-
dicted data. The distribution of normalized differences are shown in Fig.5-6-7 and 8. The differences calculated
were Walters et al. minus Gerris value.
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Figure 5: Distribution of normalized amplitude ratio for the �� tidal elevation, comparing the encompassing
model with the results predicted by Model A.

From Fig .5 and 6, typical errors for elevation predicted using Model A, are the order of �� % in amplitude
and ��o in phase. The asymmetry in the distribution of errors also suggests a tendency to underestimate ampli-
tudes and to overestimate phases.
Next, we analyse the tidal currents predicted by Model A. Fig.7 and 8 quantify the error for the amplitude of �
and 
 velocity components respectively. We notice that the typical differences are under � 	� m/s for both compo-
nents and that � velocity component tends to be overestimated. This agreement is quite satisfactory. However,
the accuracy of the amplitude elevation is not sufficient yet to validate our numerical model. Therefore we
investigate another boundary condition that will take into consideration both tidal elevation and current.
As a result, a radiation condition (Model B) which requires a specification of both elevation and velocity, is
applied at the boundary, as described in (23). The elevation errors are then quantified in Fig.9 and 10 which
show the significant improvement using this iterative condition.
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Figure 6: Distribution of phase difference between the encompassing model and Model A, for the �� tidal
elevation.
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Figure 7: Distribution of amplitude difference of the �-velocity component, between the encompassing model
and Model A, for the �� tidal constituent.
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Figure 8: Distribution of amplitude difference of the v-velocity component, between the encompassing model
and Model A, for the �� tidal constituent.
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Figure 9: Distribution of normalized amplitude ratio for the �� tidal elevation, comparing the encompassing
model with the results predicted by Model B.
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Figure 10: Distribution of phase difference between the encompassing model and Model B, for the �� tidal
elevation.
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Figure 11: Distribution of amplitude difference of the u-velocity component, between the encompassing model
and Model B, for the �� tidal constituent.
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Figure 12: Distribution of amplitude difference of the v-velocity component, between the encompassing model
and Model B, for the �� tidal constituent.

In fact the typical elevation error predicted by Model B is under �� % in amplitude and under �o in phase.
Moreover the asymmetry is largely reduced. Besides, while using an iterative condition, the distribution of
current is more in concordance with the larger-scale model. The corresponding difference for current is given
in Fig.11 and 12. The changes concerning the distribution of current are not as important as the elevation ones.
Nevertheless, we notice an improvement concerning the asymmetry of � velocity component and smaller errors
are found concerning the amplitude of 
 velocity component.
Hence, while using an iterative condition, both tidal elevation and distribution of current are more in concor-
dance with the larger-scale model. Appendix B provides the distribution of elevation errors at each step of the
convergence. The difference tends to be smaller from one iteration to the next. Eventually, there is a significant
improvement using the iterative procedure. Thus from now, we consider the iterative radiation condition to
provide the best input along the outer boundary. Next, the tidal results will be presented for this solution.

3.7 The Sea surface elevation

Fig.13 displays the location of coastal cities we will next focus on.

Figure 13: Coastal sites of sea level analysis.
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The results for the M2 tidal elevation are presented in Fig.14 and 16. In Fig.14, tidal amplitude is shaded
using the scale of decreasing colours corresponding to descending values from �	�� m for the red parts, to

� m for the blue areas. We have displayed the �� tidal elevation of the driving model on the left and the
corresponding solution obtained with Gerris, on the right. We notice the very good agreement with the driving
model. In fact, the physical pattern of tides is well reproduced with a strong amplification along the west coast
and near the land. Then the typical elevation on the west coast is above � m while it is under � 	� m along the
east coast. The maximum amplitude of �	�� m is measured in Tasman Bay, near Nelson. The lowest values are
registered in Cook Strait near Wellington.
Fig 15 provide an estimation of the error between the driving model and Gerris. The discrepancies become more
important when we go closer to the coast in very shallow water. However, the maximum difference given by
the infinity-norm is �� cm and the averaged difference given by the �-norm is only � 	� cm which confirms the
accuracy of Gerris model.

Figure 14: Comparison of �� amplitude elevation between the driving model (on the left) and Gerris (on the
right). Amplitude is shaded using decreasing colours : min = � cm max = ��� cm.

Figure 15: Amplitude error between Gerris model and the driving model. Error is shaded using decreasing
colours : min = � cm max = �� cm.

The results for elevation phase are presented in Fig.16. Tidal phase is shaded using the scale of decreasing
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colours corresponding to descending values from ���o for the red parts, to �o for the blue areas. The results
of the driving model are shown on the left and the solution obtained with Gerris is displayed on the right. We
notice the very good agreement with the driving model. The �� tidal phase fluctuates between �o on the west
coast and ���o on the east, which means that at any given time there is always a high tide and a low tide
somewhere along New Zealand coast. Therefore the phase difference across Cook Strait is quite significant and
is the origin of the dynamics that occur like the strong currents.
Fig 17 provides an estimation of the phase difference between the driving model and Gerris. The error is more
important in Cook Strait and near the sounds where the topography is complex. Then the maximum difference
for the well resolved areas is ��o, and the averaged difference given by the �-norm is only � 	�o which confirms
the good agreement.

Figure 16: Comparison of �� phase elevation between the driving model (on the left) and Gerris (on the right).
Phase is shaded using decreasing colours: min = �o max = ���o.

Figure 17: Phase difference between Gerris model and the driving model. Error is shaded using decreasing
colours : min = ���o max = ��o.

There is an area where the amplitude looks very low and when the phase lines converge. This part is
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enlarged on Fig.18. The node near Wellington, in the south end of the North Island, coloured in deep blue
and where the phase isolines meet, is an amphidromic point. An amphidromic point is a point within a tidal
system where the tidal range is almost zero. It can be seen as the �� equivalent of nodes in a standing wave
pattern. Usually, these particular points occur because of a resonance phenomenon within an oceanic basin,
generating a standing wave pattern which rotates around the nodal point. This stationary wave is a result of
interference between two waves travelling in opposite directions. Then the distribution of current is formed by
the superposition of these two waves propagating in opposite directions. Here the amphidrome is particular
because it is located on land, then it is called a virtual (or degenerated) amphidrome. It is a different in that
it is due to forced waves at each end of Cook Strait. Around New Zealand, the semi-diurnal tides are viewed
as trapped Kelvin waves which are coastal gravity driven waves that balance the Earth’s Coriolis force in the
ocean. Kelvin waves are non-dispersive, i.e., the phase speed of the wave crests is equal to the group speed
of the wave energy for all frequencies. Usually, Kelvin waves propagate around the northern (respectively
southern) hemisphere oceans in a counterclockwise (respectively clockwise) direction using the coastline as a
wave guide. The situation around New Zealand is quite unusual. Commonly in the Southern hemisphere the
tides rotate around an amphidromic point in a cyclonic sense (i.e., clockwise) whereas around New Zealand the
cotidal lines rotation around the node is anticyclonic. This feature was outlined by Heath [8]. Moreover, Egbert
et al. [7] outlined the two amphidromes in the north-west and south-east of New Zealand. Therefore the wave
is trapped because of these forced waves that act on both coasts. Then the wave pattern is not determined by
only resonance characteristics but must take into consideration more complex physics.

We will next compare the elevation amplitude and phase of Gerris solution with observations. The results

Figure 18: Amphidromic point in Cook Strait. Amplitude is shaded using decreasing colours : min = � cm
max = ��� cm. Phase is drawn as lines : min = �o max = ���o.

obtained are provided in table 4. The maximum difference between observations and model results for the
coastal sites presented here is �� 	� cm in amplitude and �� 	�o in phase. Moreover, the observations data are
not all the same quality. These results are summarised in Fig 19 and 20. Here Gerris solution of amplitude and
phase is plotted against observation values. If the concordance was exact all the points would be on the line of
unit gradient. Despite a perfect agreement, we notice that the error remains under �� % for the amplitude and
the difference is under ��o for the phase, which is a good agreement.

Location Predicted Observed Predicted Observed
elevation amplitude elevation amplitude elevation phase elevation phase

(cm) (cm) (deg) (deg)

Kapiti Is. �� 	� �� 	� ��� 	� ��� 	�
Little Kaiteriteri ��� 	� ��� 	� ��� 	� ��� 	�

Wellington �� 	� �� 	� ��� 	� ��� 	�
Riversdale �� 	� �� 	� ��� 	� ��� 	�
Nelson ��� 	� ��� 	� ��� 	� ��� 	�
Kaikoura �� 	� �� 	� �� �	� ��� 	�
Charleston ��� 	� ��� 	� ��� 	� ��� 	�

Table 4: Comparison between predicted tidal elevation and observations.
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Figure 19: Comparison of tidal elevation amplitude with observations.
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Figure 20: Comparison of tidal elevation phase with observations.
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3.8 Tidal circulation in Cook Strait

In this section we will analyse the tidal results obtained for the distribution of current.
Fig 21 displays the amplitude of � component of velocity corresponding to the �� tidal constituent. The solution
referring to the driving model is shown on the left while Gerris solution is given on the right. We notice the
good agreement between both models. Here the maximum amplitude coloured in red is � m/s and is registered
in Cook Strait. Fig 22 provides a quantum of the error between the driving model and Gerris. The maximum
contrasts occur in Cook Strait when we go closer to the coast, in very shallow water, but they are only � 	� m/s
which is quite satisfactory.

Figure 21: Amplitude of � component of velocity corresponding to the �� tidal constituent. Comparison
between the driving model (on the left) and Gerris (on the right). Amplitude is shaded using decreasing colours
: min = � m/s max = � m/s.

Figure 22: Amplitude error of � component of velocity. Error is shaded using decreasing colours : min = � m/s
max = � 	� m/s.

Fig 23 displays the amplitude of 
 component of velocity corresponding to the �� tidal constituent. As
previously, the solution on the left refers to the driving model and the one on the right refers to Gerris. The
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same conclusions apply here. There is a strong amplification of amplitude across Cook Strait with a maximum
amplitude of � m/s. The amplitude error of 
 component of velocity is shaded on Fig 24. The major discrepancies
of � 	� m/s are shown in red and occur in Cook Strait where the topography is complex, and near Charleston
and Kaikoura.

Figure 23: Amplitude of 
 component of velocity corresponding to the �� tidal constituent. Comparison be-
tween the driving model (on the left) and Gerris (on the right). Amplitude is shaded using decreasing colours :
min = � m/s max = � m/s.

Figure 24: Amplitude error of 
 component of velocity. Error is shaded using decreasing colours : min = � m/s
max = � 	� m/s.

Both component of velocity are well reproduced with small differences after comparing with the larger-scale
model.
The velocity vector is shown on Fig.25. The tidal current vectors are displayed as arrows, indicating direction
and velocity of the calculated tidal current at the given position and time. We notice the strongest currents
across the strait as expected.

The tip of the velocity vector traces an ellipse as time progresses. We convert the north-going and east-going
velocity components into ellipse parameters to be able to match the results. As defined in section 3.5 the velocity
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Figure 25: Instantaneous current vector. Scale = ���.

components can be expressed as tidal harmonics

� � � � �� � �� � � � � � � ��� � � 
 	 ��� � � � (24)


 � � � ��� �� � � � � � � ��� � � 
 � ��� � � � (25)

where � � and � � are the amplitudes, � is the phase, and � refers to the frequency. Then,
�

and � are the east
and north cosine coefficients, while

	
and � are the east and north sine coefficients. We define the complex

velocity �� � � 
 �
 expressed in terms of counter-clockwise

�
�

, and clockwise,

�
��

, complex amplitudes as

�� �

�
� ��� ��� �� 
 �

�	 ��� ���� �� � (26)

where the asterisk indicates the complex conjugate. The complex amplitudes can be written

�
� � �� ��� ���� �

and

�
� � � � ��� ���� �, where

�

and �
 represent real counter-clockwise (



) and clockwise (�) amplitudes

and phases. Then tidal current ellipse attributes can be represented by three parameters: the semi-major axis or
maximum current velocity � (positive quantity), the semi-minor axis �, and the inclination or the angle that the
semi-major axis makes with east,  , measured counter-clockwise. In terms of the above quantities, the ellipse
parameters can be written

� � �� 
 � � � (27)

� � ��
� � � � (28)

 �
��� 
 �� �

� 	 (29)

A forth parameter, the eccentricity, is defined as

� � �� � ��
�� 	 (30)

For each tidal constituent, the current vector rotates around the ellipse. The direction of rotation is indicating by
attaching a sign to the eccentricity. By convention, positive eccentricity is anticlockwise rotation of the current
vector around the tidal ellipse.
Fig 26 provides a comparison in Cook Strait between tidal ellipses given by Gerris, displayed in red, and the
ellipses corresponding to the driving model, displayed in black. Despite slight differences, the ellipses stack
quite well.
Furthermore, to make a validation of the distribution of current, we need to compare our results to other data.

Stanton et al. [1] have analysed the tidal currents using the high-resolution encompassing model developed by
Walters et al. [14]. However, as shown on the map, Fig 27, the lack of observed data in the geographical region
of interest did not allow us to make many comparisons. In fact, practically, it is not easy to obtain accurate
current measurements. NIWA and its predecessor organisations have been deploying recording current meters
since ����. These data are archived at NIWA, but the database covering the concerning region around Cook
Strait area is reduced. Fig 28 provides a comparison between both model (driving-model and Gerris) and
measurements, for the available sites shown on Fig 27. For a better legibility, we have plotted on Fig 29–35 the
ellipses for each site in order to discuss the results and their accuracy.
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Figure 26: Tidal ellipses in Cook Strait. Instantaneous values. Scale = ��.
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Figure 27: Points from which computed results are compared with observations.
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Figure 28: Comparison of Gerris tidal ellipses with the larger-scale model and observations. �o longitude � ��
cm/s.
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Figure 29: Comparison of tidal ellipses predicted by Gerris, with the larger-scale model and observations, for a
point located at ��� 	� ��� E �� 	���� S. Concerning the measurements the water depth is � � m and the instrument
depth is �� m. �o longitude � �� cm/s.
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Figure 30: Comparison of tidal ellipses predicted by Gerris, with the larger-scale model and observations, for a
point located at ��� 	���� E �� 	� ��� S. Concerning the measurements the water depth is �� m and the instrument
depth is �� m. �o longitude � �� cm/s.
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Figure 31: Comparison of tidal ellipses predicted by Gerris, with the larger-scale model and observations, for a
point located at ��� 	���� E �� 	���� S. Concerning the measurements the water depth is �� m and the instrument
depth is �� m. �o longitude � �� cm/s.
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Figure 32: Comparison of tidal ellipses predicted by Gerris, with the larger-scale model and observations, for
a point located at ���	� ��� E �� 	���� S. Concerning the measurements the water depth is ��� m and the
instrument depth is ��� m. �o longitude � �� cm/s.
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Figure 33: Comparison of tidal ellipses predicted by Gerris, with the larger-scale model and observations, for
a point located at ���	���� E �� 	���� S. Concerning the measurements the water depth is ��� m and the
instrument depth is �� m. �o longitude � �� cm/s.
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Figure 34: Comparison of tidal ellipses predicted by Gerris, with the larger-scale model and observations, for a
point located at ��� 	� � E � �	��� S. Concerning the measurements the instrument depth is �� m. �o longitude
� �� cm/s.
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Figure 35: Comparison of tidal ellipses predicted by Gerris, with the larger-scale model and observations, for a
point located at ��� 	��� E � �	��� S. Concerning the measurements the instrument depth is �� m. �o longitude
� �� cm/s.

The results differ from on site to another. Commonly, the agreement is quite good between both model and
observations even if the solution given by the larger-scale model is more in concordance with measurements
than Gerris is. There are some discrepancies in the ellipse orientation as shown on Fig 29, 30 and 35. The
predicted ellipses in Cook Strait (Fig 34 and Fig 35) are quite accurate in spite of the difficulty to reproduce the
behaviour of current in this area. Besides, in Fig 29–35, � refers to the eccentricity and allows us to check the
rotation sense of the current vector for each solution. In Fig.34, the sign of the eccentricity is not in agreement
with the other results which means that at this point, the predicted current vector rotates in the wrong direction
while describing the tidal ellipse.
In this section, we have compared the distribution of current with available measurements and with the driving-
model. However, the larger-scale model and Gerris are not based on the same physical assumptions. Indeed,
in Gerris, we adopted a linear law for friction whereas Walters et al. [14] adopted a quadratic law. Moreover,
our model is absolutely linear as we did not take into account advection terms in the momentum equations and
also because we defined the equation of mass conservation as a function of �� the depth in absence of motion,
and not as a function of the total depth � . The larger-scale model is based on shallow water equations too,
but some non-linear terms were retained. These differences may have an influence on the resulting solution,
particularly on the distribution of current, and could explain some of the disparities obtained. Furthermore,
the lack of observed data did not allow us to make accurate comparisons. Then, for the points where the gap
between observations and the global scale model was too large, it was difficult to claim which data were the
most accurate. Finally, the measurements were not reliable for all the sites. In fact, for each location we had
several measurements referring to different instrument depths. We only took into consideration the deeper
observations to adequately reproduce currents. However, the best thing would be to get measurements of the
vertically averaged velocity. This would integrate the horizontal velocity over the full depth of the ocean and
therefore it would provide a reliable measure of current variability.
Therefore, taking into account these remarks, we consider the distribution of current given by Gerris to be
satisfactory.

4 Conclusion

In this report, we have examined the accuracy of the tidal response of a ��� km wide area around Cook Strait.
We only took into consideration the lunar semi-diurnal constituent �� . The distribution of amplitude and phase
was calculated using a numerical model based on the linearized �-dimensional shallow water equations, and
driven by Walters et. al [14] larger-scale encompassing model data.
We have run a set of simulations using Gerris to validate the model. First, we compared the solution given
by Gerris with the larger-scale model solution for different open-boundary conditions, in order to choose the
best input. Flather iterative condition appeared to give more accurate results than the classical non-iterative
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approach. That is why the model was driven using this radiation condition.
Then the resulting solution was compared with the encompassing model solution and with observations. Our
aim was to acquire a solution as accurate as the driving-model results. The physical pattern of tides was well
reproduced and the tidal range obtained was realistic. The �� tidal solution obtained for sea elevation was in
very good agreement with the driving model and in quite good agreement with observations. Moreover, despite
some discrepancies and taking into consideration the difficulty to reproduce the distribution of current and to
make accurate comparisons, the tidal currents obtained were also in good agreement with the driving model
and with measurements. Therefore we meet the requirements and consider our objective reached.
However, the present results indicate that it would be worthwhile to investigate the performance of the model by
improving the bathymetry. In fact, the bathymetry used in Gerris (see Fig 1) was extracted from the larger-scale
model. Thus, smaller scale regions are not well resolved in our model. Consequently, to improve our results
we could run another set of simulations and focus on a small area where the bathymetry would be refined , in
order to check the accuracy of the solution near the bays.
Finally, it would be profitable to refine the spatial resolution of the discretisation, particularly near solid bound-
aries, to take into consideration the complexity of the topography. This may improve significantly the description
of the dynamics in Cook Strait and will allow us to confirm the validation of the numerical model.
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Appendix A Major harmonic components contributing to the astronom-

ical tides

Symbol Period Frequency Description
(����

rad/s)

�� ��h�� �	����� Principal lunar, semi-diurnal�
� ��h�� �	����� Principal solar, semi-diurnal

� � ��h�� �	����� Larger lunar elliptic, semi-diurnal

� � ��h�� �	����� Lunar-solar declinational, semi-diurnal

�� ��h�� � 	����� Principal lunar, diurnal

� � ��h�� � 	����� Lunar-solar declinational, diurnal

� � ��h�� � 	��� �� Principal solar, diurnal

� � ��h�� � 	����� Larger lunar elliptic, diurnal

Table 5: List of major tidal constituents.

Appendix B Illustration of the convergence of the solution using Flather

iterative condition

Elevation amplitude convergence

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

% error in amplitude

t=2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

% error in amplitude

t=3

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

% error in amplitude

t=4

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

% error in amplitude

t=5

26



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

% error in amplitude

t=6

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

% error in amplitude

t=7

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

% error in amplitude

t=8

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

% error in amplitude

t=9

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

% error in amplitude

t=10

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

% error in amplitude

t=11

Elevation phase convergence

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

phase error in degrees

t=2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

phase error in degrees

t=3

27



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

phase error in degrees

t=4

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

phase error in degrees

t=5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

phase error in degrees

t=6

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

phase error in degrees

t=7

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

phase error in degrees

t=8

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

phase error in degrees

t=9

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

phase error in degrees

t=10

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

-40 -20  0  20  40

no
rm

al
iz

ed
 c

ou
nt

phase error in degrees

final

28



Appendix C NIWA:“where the waters meet the sky ”

NIWA’s mission is to provide a scientific basis for the sustainable management and development of New Zealand’s
atmospheric, marine and freshwater systems and associated resources. Established in ���� as one of nine New
Zealand Crown Research Institutes (CRIs), NIWA operates as a stand-alone company with its own board of
directors and its shares held by the Crown.
The company has a staff of around ���, annual revenue of �� million derived from competition-based research
grants and commercial enterprise, and assets of �� million. The different consultancy services help clients solve
problems on the use and management of: Atmosphere and Climate, Coast and Oceans, Freshwater, Fisheries
and Aquaculture.
Spread throughout New Zealand, NIWA has its corporate headquarters in Auckland, main research campuses
in Auckland, Hamilton, Wellington, Nelson, Christchurch and Lauder, and field offices in the smaller centres.
Research vessels are maintained in Hamilton, Wellington and Christchurch. The company has subsidiaries in
Australia and the USA and a vessel company.
The majority of NIWA’s research funding comes from the Public Good Science and Technology fund, adminis-
tered by the Foundation for Research, Science and Technology, and from the Ministry of Fisheries. NIWA staff
also participate widely in international initiatives, representing New Zealand in such fora as the Intergovern-
mental Panel on Climate Change (IPCC)and the United Nations Environment Programme (UNEP).
Moreover, NIWA is a technology-driven, innovative company in the business of creating wealth as well as pro-
viding policy advice. Its clients include New Zealand and overseas governments; local and regional councils;
industries such as energy, fisheries, forestry, dairy, horticulture, and agriculture; port authorities and oil compa-
nies; consulting engineers; and others who use water and air for commercial and recreational purposes.
NIWA’s Maori name Taihoro Nukurangi describes its activity as studying the waterways and the interface be-
tween the earth and the sky. Actually, Taihoro is the flow and movement of water (from tai for “coast ”, “tide
”and horo for “fast moving ”). Nukurangi is the interface between the sea and the sky (i.e., the atmosphere).
Together, Taihoro Nukurangi mean “where the waters meet the sky ”.
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